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Particle-driven gravity currents, as exemplified by either turbidity currents in the ocean
or ignimbrite flows in the atmosphere, are buoyancy-driven flows due to a suspension
of dense particles in an ambient fluid. We present a theoretical study on the dynamics
of and deposition from a turbulent current flowing down a uniform planar slope from
a constant-flux point source of particle-laden fluid. The flow is modelled using the
shallow-water equations, including the effects of bottom friction and entrainment of
ambient fluid, coupled to an equation for the transport and settling of the particles.
Two flow regimes are identified. Near the source and for mild slopes, the flow is
dominated by a balance between buoyancy and bottom friction. Further downstream
and for steeper slopes, entrainment also affects the behaviour of the current. Similarity
solutions are also developed for the simple cases of homogeneous gravity currents
with no settling of particles in the friction-dominated and entrainment-dominated
regimes. Estimates of the width and length of the deposit from a monodisperse
particle-driven gravity current with settling are derived from scaling analysis for each
regime, and the contours of the depositional patterns are determined from numerical
solution of the governing equations.

1. Introduction
Particle-driven gravity currents, or turbidity currents, are buoyancy-driven flows due

to a suspension of dense particles. An understanding of these flows has applications
to many geological, oceanographical and environmental processes. One important
economic example is the emplacement of sediment that ultimately forms so-called
turbiditic oil reservoirs (Wesser 1977; Perrodon 1985; Mutti 1992). Another rather
spectacular and potentially dangerous example is the pyroclastic flow of hot gas and
particles from a volcanic eruption (Simpson 1987).

Previously, we have studied theoretically and experimentally the behaviour of two-
dimensional and axisymmetric particle-driven gravity currents flowing over horizontal
surfaces due to either a fixed-volume release or a constant input of particle-laden fluid
(Bonnecaze, Huppert & Lister 1993, 1996; Bonnecaze et al. 1995; Sparks et al. 1993).
We developed a model based on the shallow-water equations for the conservation
of mass and momentum of the fluid and a convective-transport equation for the
conservation and settling of particles. The model was shown to describe successfully
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the dynamics of and deposition from turbidity currents in the laboratory in a variety
of situations. These include turbidity currents composed of polydisperse suspensions
(Bonnecaze et al. 1996) and turbidity currents with reversing buoyancy due to the
suspension of particles in an interstitial fluid that is less dense than the ambient
(Sparks et al. 1993). Dade & Huppert (1994, 1995, 1996) have applied so-called box
models of these flows to describe geological observations, such as the Black Shale
turbidite off the coast of Cape Hatteras and the emplacement of an ignimbrite deposit
from the Taupo volcano.

In all these studies the effects of entrainment of ambient fluid have been neglected.
Ellison & Turner (1959) found that entrainment can significantly affect the dynamics
of a homogeneous one-dimensional current flowing down a slope. They found that
the rate of entrainment can be fitted empirically by the product of the local speed
of the current and an entrainment coefficient E, which is a function of the slope,
the velocity of the current and the density difference between the current and the
ambient fluid (Ellison & Turner 1959; Turner 1973, pp. 178–186). These dependences
can be captured by correlating E with the Richardson number, defined as the ratio
of the buoyancy force to the inertial shear force. Recently, Hallworth et al. (1994,
1996) studied experimentally the entrainment in homogeneous currents created by
the release of a fixed volume of dense saline fluid and flowing over a horizontal
surface.

In this paper we study theoretically the behaviour of turbulent homogeneous and
particle-driven gravity currents flowing down a planar slope from a constant source
of dense fluid in a deep ambient fluid. Such a flow might occur, for example, at
the outlet of a submarine canyon at the base of a continental shelf, which acts as
a hydraulic control for a turbidity flow created by a submarine landslide at the
top of the shelf and issuing from the canyon onto the abyssal slope. The outline
of the paper is as follows. In § 2 we modify the shallow-water equations to include
the effects of entrainment and friction, which are important for turbulent gravity
currents down slopes. These equations capture quite generally the effects of inertia,
buoyancy and friction as well as entrainment. However, the equations are simplified
by the identification of two flow regimes. We show in § 3 that, for mild slopes and
near the source, the flow is dominated by a force balance between friction and
buoyancy; the effects of inertia and entrainment are negligible. For this regime we
first develop a similarity solution for the case of a homogeneous gravity current (no
settling of particles), including an analytic formula for the cross-slope extent of the
flow. We then apply a scaling analysis to the governing equations for a turbidity
current (with particle settling) in order to determine the characteristic dimensions
of the flow and its deposit. With these we are able to write a dimensionless set
of equations describing the flow which contain no dimensionless groups and are
thus independent of all the physical parameters. These equations are solved once
numerically to determine the universal deposition pattern for this system. In the
second flow regime, which is discussed in § 4 and applies for steeper slopes and
further from the source, entrainment becomes important in addition to the effects
of friction and buoyancy. A similarity solution is again derived for a homogeneous
current, the equations scaled and, in a manner similar to that for the case of no
entrainment, we determine the universal deposition pattern from turbidity currents
in this regime. Finally, in § 5 we conclude with a brief summary of the results and
a means to determine which depositional regime is pertinent based on the inlet
conditions and nature of the slope.
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Figure 1. Profile and plan view of a gravity current due to a constant source of
dense particle-laden fluid on a planar slope.

2. Model equations
Consider a particle-driven gravity current flowing from a constant source of fluid

down a planar slope tilted at an angle θ to the horizontal (figure 1). We assume that
the flow rate is sufficiently large that the current is turbulent and that the turbulence
keeps the particles vertically well-mixed over the current thickness h(x, y), where x
and y are the down-slope and cross-slope directions. The current has a bulk density
ρc(x, y) and is flowing under a deep layer of ambient fluid of density ρa. The current
is composed of monodisperse particles of density ρp suspended in the ambient fluid.
The density of the gravity current is a volume average of the densities of the particles
and the ambient interstitial fluid and hence is given by

ρc(φ) = ρpφφ0 + ρa(1− φφ0), (2.1)

where φ0 is the volume fraction of particles at the source and φ(x, y) is the proportion
of these still in suspension.

The thickness of the current h(x, y) varies slowly along the current, except perhaps
in a small region very near the source. The mean down-slope and cross-slope velocities,
u(x, y) and v(x, y), predominate and there is only a very small vertical component of
the flow. Here we take vertical to be perpendicular to the slope. The assumption of
vertical uniformity of u and v parallels the assumption that the particles are vertically
well-mixed. Thus, we may neglect vertical accelerations and assume a hydrostatic
pressure gradient within the current, which only depends on the local density of the
current ρc(φ), provided that h tan θ/x� 1 (Mahrt 1982).

In addition to the buoyancy and inertial forces acting on the current, we also allow
for entrainment of ambient fluid and bottom friction. We follow the model of Ellison
& Turner (1959) which assumes that the rate of entrainment is the product of the
local speed of the flow and an entrainment coefficient E. Frictional forces due to
shear stresses on the bottom of the current are included in the momentum equation.
We assume that the frictional drag is generated primarily by inertial effects, and so it
varies quadratically with the velocity and with a constant of proportionality given by
a friction coefficient cf .

Under these conditions we may describe the current by modified two-dimensional
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shallow-water equations, which for steady flow are given by

∇ · (uh) = E|u|, (2.2)

∇ · (uuh) + 1
2
∇(g′0 cos θφh2)− g′0 sin θφhex = − 1

2
cf |u|u, (2.3)

where u = (u, v) is the vector of the down-slope and cross-slope velocities, ex is
the unit vector in the x-direction, ∇ is the two-dimensional gradient operator, g′0 =
(ρp − ρa)φ0g/ρa is the initial reduced gravity and g is the gravitational acceleration.
We have assumed that φ0 � 1 and (ρp − ρa)φ0/ρa � 1, and used the Boussinesq
approximation, which includes the effects of φ only in the buoyancy terms and
neglects the contribution of the particles to the mass and momentum fluxes. Note
that the terms on the right-hand sides of (2.2) and (2.3) are the source of fluid due to
entrainment and the sink of momentum due to friction, respectively.

The hydrostatic pressure distribution and driving buoyancy force in the current
depend on the local volume fraction of particles. The concentration of particles varies
throughout the current due to advection, settling and entrainment of ambient fluid.
Here we neglect particle entrainment from the base of the flow on the assumption that
the velocities are insufficient to lift deposited sediment into the current. However, as
stated earlier, we do assume that the flow is sufficiently vigorous for turbulent mixing
to maintain a vertically uniform particle concentration in the current, including
entrained fluid. Further, we assume that the particles leave the current only through
the viscous sublayer at the base with a flux vsφφ0 cos θ (Einstein 1968; Martin &
Nokes 1988), where vs denotes the settling velocity of an isolated particle, which is
appropriate when the concentration of particles is small. Conservation of particles
for a steady two-dimensional flow is then given by

∇ · (uhφ) = −vsφ cos θ. (2.4)

Equations (2.2)–(2.4) describe the effects of inertia, buoyancy, friction, entrain-
ment and particle settling on the dynamics of and deposition from steady turbulent
particle-driven gravity currents down a planar slope. These equations have been used
successfully to model two-dimensional and axisymmetric gravity currents flowing over
horizontal surfaces with negligible entrainment and friction (Bonnecaze et al. 1993,
1995, 1996). As we shall see, two flow regimes exist in the present case, namely flow
with and without entrainment, and considerable simplifications can then be made to
the governing equations.

3. Negligible entrainment
As mentioned earlier, Ellison & Turner (1959) were able to correlate their ex-

perimentally determined entrainment coefficient E with the Richardson number,
Ri = g′0h cos θ/|u|2. For Ri � 1 the entrainment coefficient reaches a maximum of
about 0.09, but decreases monotonically and very rapidly for Ri > 0.1; the entrain-
ment coefficient is only about 0.001 for Ri = 1. This observation is explained by the
tendency of entrained parcels of less dense ambient fluid to be buoyantly expelled
from a denser current. The greater the contrast in density between the current and the
ambient fluid, the more rapidly ambient fluid is expelled before it is mixed into the
current by turbulence, which thus inhibits entrainment due to shear. The Richardson
number can be interpreted as the ratio of the interface-stabilizing buoyancy forces
to the destabilizing shear forces. The Richardson number is generally of order unity
near the source, so the entrainment is small. The cumulative effect of this small
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entrainment cannot be neglected sufficiently far away from the source, but it may be
neglected near the source in a region the length of which decreases with increasing
slope. An estimate of this length is given later in § 4.

Further, as is demonstrated a posteriori, the dynamics of the current are dominated
by a balance between buoyancy and friction, and so the effects of inertia can be
neglected. With these simplifications, equations (2.2)–(2.4) become

∇ · (uh) = 0, (3.1)

u =

(
2g′0Sθφh
cf

)1/2

and v = −g
′
0Cθ

cfu

∂

∂y
(φh2), (3.2)

∇ · (uφh) = −vsφ cos θ, (3.3)

where the equations for the velocities in (3.2) are due to the dominant down-slope
and cross-slope balances between gravitational and frictional forces, and Cθ = cos θ
and Sθ = sin θ. It has been assumed in (3.2) that |u| ∼ u, which will be true sufficiently
far from the source. We first show an analytic solution to equations (3.1)–(3.3) for a
current in which the settling velocity of the particles is negligible or, equivalently, for
a homogeneous current, and then proceed to determine a numerical solution for the
case with particle settling.

3.1. Flow of a homogeneous current with negligible entrainment

For a steady, homogeneous current flowing down a planar slope with no entrainment,
φ = 1, and the down-slope and cross-slope velocities are functions of h only, namely,

u =

(
2g′0Sθh
cf

)1/2

, (3.4)

and

v = −Cθ
Sθ

(
2g′0Sθh
cf

)1/2
∂h

∂y
. (3.5)

The down-slope velocity is determined by a balance between the down-slope frictional
forces, proportional to u2 and the gravitational forces due to the slope of the planar
surface over which the current flows. The cross-slope velocity is set by a balance be-
tween the dominant cross-slope frictional forces, proportional to uv, and the buoyancy
forces due to cross-slope variations in the height of the current. Inserting (3.4) and
(3.5) into the equation of mass conservation yields the nonlinear partial differential
equation for h,

∂h

∂x

3/2

=
Cθ

Sθ

∂

∂y

(
h3/2 ∂h

∂y

)
. (3.6)

The boundary conditions for this equation are that h vanishes at the edges or cross-
slope extent of the current ye(x) (figure 1), which must be determined simultaneously
with h(x, y) for this free-boundary-value problem. Since there is no entrainment of
ambient fluid, the integrated flow across any cross-section is conserved, and so the
cross-slope extent of the current, ye(x), is set by the constraint of conservation of
mass at any down-slope position. That is,

2

∫ ye(x)

0

uh dy = Q, (3.7)

where Q is the volumetric flow rate of the source.
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Figure 2. Similarity solution for the height H of a homogeneous gravity current with no entrainment
as function of the cross-slope position Y for several values of the down-slope position X. The
down-slope positions X range from 0.05 (inner profile) to 3.05 (outer profile) and are evenly spaced
with intervals of 0.2.

Equations (3.4)–(3.7) can be solved analytically using a similarity transform for h
given by (e.g. Lister 1990, p. 237)

h(x, y) = ηN
2

(
cfQ

2

8g′0Cθ

)1/4

x−1/4G(η), (3.8)

where

η = y/ye(x), (3.9)

ye(x) = ηN

(
cfQ

2C3
θ

8g′0S4
θ

)1/8

x3/8, (3.10)

G(η) = 3
16

(1− η2), (3.11)

and

ηN =

(∫ 1

0

[G(η)]3/2dη

)−1/4

=

(
16

3π2/5

)5/8

. (3.12)

Figure 2 illustrates the height of the current as a function of the down-slope and
cross-slope positions. Note that in the figure h, x and y have been non-dimensionalized
by Ĥ , X̂, Ŷ , which are defined in the next subsection. The height of the current
decreases down-slope as it spreads laterally. The height of the current is infinite at the
origin since we have assumed a point source of fluid. To the best of our knowledge,
this is the first analytic solution for turbulent flow down a planar slope due to a
steady point source of fluid, and this solution complements the analogous solution
for viscous flow given by Smith (1973).
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Finally, given the similarity solution, the order of magnitude of the terms neglected
in (2.3) decay at least O(x−1) faster than the dominant terms retained in (3.2).
This justifies our assumption for sufficiently large x. We note for small x that the
homogeneous gravity current is unaffected by the slope, and as can be shown,
for example by following the method described by Lister (1992), it behaves like an
axisymmetric flow from a point source flowing over a horizontal surface with a balance
between inertial and buoyancy forces. The similarity solution describing this flow has
been presented by Bonnecaze et al. (1995). By balancing the neglected inertial term
of largest magnitude with those retained in equation (2.3), we find that the similarity
solution described by equations (3.8)–(3.12) is valid for x� (Q2/g′0Cθcf3)1/5.

3.2. Turbidity current with negligible entrainment

As a turbidity current due to a constant flux of particle-laden fluid flows down the
slope, it will deposit its particles over some characteristic down-slope and cross-slope
length scales. These length scales, as well as characteristic dimensions for the height
and velocities of the turbidity current, can be estimated using scaling arguments
and the governing equations for the flow. The characteristic down-slope and cross-
slope dimensions, X̂ and Ŷ , are proportional to the product of the characteristic
down-slope and cross-slope velocities, Û and V̂ , and the characteristic time for
settling, Ĥ/vs cos θ, where Ĥ is the characteristic height of the current; that is,

X̂ ∼ ÛĤ/vs cos θ and Ŷ ∼ V̂ Ĥ/vs cos θ. From (3.4)–(3.5), Û ∼ (2g′0SθĤ/cf)1/2 and

V̂ ∼ (2g′0C2
θ Ĥ

3
/cfSθŶ

2
)1/2 and, since the flux down the slope is conserved, ÛĤŶ ∼ Q.

Using these scalings yields

Ĥ =

(
Q4vs

2cf
3

8g′0
3Sθ

)1/11

, (3.13)

X̂ =

(
2g′0Q6S4

θ

vs
8cfC

11
θ

)1/11

, (3.14)

Ŷ =

(
Q5cf

2g′0S4
θ vs

3

)1/11

, (3.15)

from which Û and V̂ may be easily determined. For slowly settling particles X̂ � Ŷ .
Letting H = h/Ĥ , U = u/Û, V = v/V̂ , X = x/X̂ and Y = y/Ŷ , equations

(3.1)–(3.3) can usefully be non-dimensionalized to yield

∂UH

∂X
+
∂VH

∂Y
= 0, (3.16)

U = (φH)1/2 and V = − 1

(φH)1/2

∂

∂Y
( 1

2
φH2), (3.17)

∂UHφ

∂X
+
∂VHφ

∂Y
= −φ. (3.18)

Clearly, these non-dimensionalized equations are independent of all the physical
parameters in the problem. Hence, they are universal equations that describe the
dynamics of and deposition from a turbidity current flowing down a planar slope
with negligible entrainment. The resulting universal deposition pattern can then be
determined by solving (3.16)–(3.18) once, which must be done numerically. We have
done so using an explicit central finite-difference method to yield the results illustrated
in figures 3–5.
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Figure 3. Numerical solution for the height H of a particle-driven gravity current with no entrain-
ment as function of the cross-slope position Y for several values of the down-slope position X. The
down-slope positions X range from 0.05 (inner profile) to 2.05 (outer profile) and are evenly spaced
with intervals of 0.2.

Figure 3 shows the height of the turbidity current as a function of the down-slope
and cross-slope positions. Initially, before too much sediment has been deposited, the
height of the current behaves much like that of a homogeneous current. As a result,
the rate of sedimentation is initially very much larger at the edges of the current since
the height of the current is smaller in that region and so there is a relatively shorter
average distance for the particles to settle. Thus, the volume fraction is less at the
edges of the current (figure 4). With this relative loss of buoyancy compared to the
interior of the flow, the cross-slope velocity near the edge of the current is not as
large as that in the interior. So, as seen in figure 3, further from the source there is a
relative accumulation of fluid near the edge since it can no longer expand as fast as
a homogeneous current.

Since the interstitial fluid has been made just slightly more dense (0.01%) than the
ambient fluid in order to simplify the numerical solution, the height of the current far
down-slope (X � 1) begins to approach again the quadratic shape of the self-similar
homogeneous current. We confirmed that the dynamics of and deposition from the
current were not appreciably different in the region of deposition by trying various
values of the interstitial fluid density ranging from 0.001% to 0.05% greater than the
ambient.

Figures 4 and 5 show two views of the volume fraction as a function of down-
slope and cross-slope position. Figure 4 shows that the dominant path for sediment
transport is along the centre or core of the flow since sedimentation is more rapid at the
edges. Since the settling flux is proportional to φ, the contours of the volume fraction
of particles in the current in figure 5 can also be interpreted as the depositional
pattern for a current flowing for some sufficiently long time that the steady-state
behaviour of the flow dominates the build-up of the deposit. The contours can then
be considered to be scaled by the density or depth of deposit at the origin. If there has
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Figure 4. Numerical solution for the volume fraction of particles in a particle-driven gravity current
with no entrainment as function of the cross-slope position Y for several values of the down-slope
position X. The down-slope positions X range from 0.05 (inner profile) to 2.05 (outer profile) and
are evenly spaced with intervals of 0.2.

been a steady flow for a period of time ∆t, the density of deposit at the origin would
be ρpvsφ0 cos θ∆t. The deposit is clearly lobe-shaped and the dimensional down-slope

and cross-slope extent of the deposits are obtained by rescaling with X̂ and Ŷ , where
X̂ � Ŷ . Assuming that the extent of the deposit is defined by the contour φ = 0.01,
the down-slope and cross-slope extent of the deposit are approximately 1.8X̂ and
3.2Ŷ .

4. Entrainment
In the previous section we neglected the effect of entrainment of ambient fluid on the

dynamics and deposition associated with homogeneous or turbid gravity currents. The
justification for this assumption rests on the small value of the entrainment coefficient
(E � 0.1), which applies particularly for mild slopes. While some entrainment is of
course occurring, the fraction of entrained ambient fluid can be shown to be negligible
in comparison to the original interstitial fluid of the current. Further from the source,
however, entrainment becomes significant as more of the current is composed of
entrained ambient fluid. This can be seen by comparing the magnitudes of the terms
in (2.2) using the results from the similarity solution (3.8) for the homogeneous current
with no entrainment. The left-hand side of (2.2) is O[(g′0Sθ/cf)1/2(cfQ

2/g′0Cθ)3/8x−11/8].
The magnitude of the right-hand side is O[E(g′0Sθ/cf)1/2(cfQ

2/g′0Cθ)1/8x−1/8]. For
small entrainment coefficients E, we may thus neglect the right-hand side, but the
assumption is not uniformly valid; at a transition distance xt ∼ (cfQ

2/g′0CθE4)1/5 the
effects of entrainment become as important as the flow of the original fluid. However,
even accounting for entrainment, equations (2.2)–(2.4) can be simplified as follows.

Following a procedure similar to that of § 3.2, we determine the characteristic
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Figure 5. Contours of the normalized depth or density of deposit from a particle-driven gravity
current with no entrainment as function of down-slope and cross-slope positions. The coordinates

are non-dimensionalized by X̂ and Ŷ .

down-slope and cross-slope velocities and the lengths and thickness of a turbid
entraining current. We non-dimensionalize (2.2)–(2.4) by letting U = u/Ũ, V = v/Ṽ ,
H = h/H̃ , X = x/X̃ and Y = y/Ỹ , where Ũ = vsCθ/E, Ṽ = (C3

θ/ESθ)
1/2vs,

X̃ = (4g′0
2
Q2E5S3

θ /C
7
θ cfvs

6)1/2, H̃ = EX̃ and Ỹ = (ECθ/Sθ)
1/2X̃. The volume fraction

is also rescaled so that Φ = φ/Φ̃, where Φ̃ = (cfvs
2C2

θ/2g
′
0SθE

3X̃). The resulting
dimensionless equations are then given by

∂UH
∂X +

∂VH
∂Y = (U2 + EV2/Tθ)

1/2, (4.1)

2E

cf

[
∂

∂X (U2H)+
∂

∂Y (UVH)

]
+

E

2Tθ

∂

∂X (ΦH2)−ΦH = −(U2+EV2/Tθ)
1/2U, (4.2)

2E

cf

[
∂

∂X (UVH) +
∂

∂Y (V2H)

]
+

∂

∂Y ( 1
2
ΦH2) = −(U2 + EV2/Tθ)

1/2V, (4.3)

∂UHΦ

∂X +
∂VHΦ

∂Y = −Φ, (4.4)

where Tθ = tan θ.
The equations may be simplified as follows. Typical friction factors cf for a seabed,

which may be estimated by using Manning’s equation and the associated roughness
coefficients for open channel flow (e.g. Whitaker 1984, pp. 350–353), are of order
0.005 to 0.02. On examination of the data for entrainment taken by Ellison & Turner
(1959), we find that E ≈ 10−3 for Ri ≈ 1. For a Richardson number of O(1), we may
then assume that 2E/cf � 1. Thus, (4.1)–(4.4) simplify to become

∂UH
∂X +

∂VH
∂Y = U, (4.5)
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U = (ΦH)1/2 and V = − 1

(ΦH)1/2

∂

∂Y ( 1
2
ΦH2), (4.6)

∂UHΦ

∂X +
∂VHΦ

∂Y = −Φ. (4.7)

As in the case of no entrainment, the down-slope and cross-slope velocities are
determined by a local balance between buoyancy and frictional forces. The dominant
contribution to entrainment is due, not surprisingly, to the larger down-slope velocity.
Dimensionally, the down-slope velocity of the fluid is u = (2g′0h sin θ/cf)

1/2, and the
Richardson number Ri = cf/2 tan θ. Thus, for Ri = O(1) and for equations (4.5)–(4.7)
to be valid requires tan θ � cf.

Before solving the equations for a turbidity current, it is instructive first to solve the
equations for the case of a homogeneous current as described in the next subsection.

4.1. Homogeneous current with entrainment

Equations (4.5)–(4.7), rewritten in dimensional form, are

∂uh

∂x
+
∂vh

∂y
= Eu, (4.8)

u =

(
2g′0Sθφh
cf

)1/2

and v = −g
′
0Cθ

cfu

∂

∂y
(φh2), (4.9)

∂uhφ

∂x
+
∂vhφ

∂y
= 0. (4.10)

Although here no particles are lost by settling, the concentration of the dense com-
ponent driving the flow is reduced due to entrainment of the ambient fluid. Hence,
the conservation of buoyancy expressed in (4.10) must be retained unlike the case
for a homogeneous current with no entrainment. Since there is no settling, the total
buoyancy flux at any cross-section must be conserved so that

2

∫ ∞
0

uhφ dy = Q, (4.11)

where here the current is shown below to have infinite cross-slope extent at steady-
state due to entrainment. There is a similarity solution to (4.8)–(4.10) in which

h(x, y) = 3
5
Ex, (4.12)

φ(x, y) =
5

3

(
5Q2cf

6πg′0E4Cθ

)1/3

x−5/3e−η
2

, (4.13)

and

η =

(
5Sθ

3ECθ

)1/2
y

x
. (4.14)

Figure 6 shows the dimensionless product ΦH, which is proportional to the
buoyancy force in the flow, across the current for several locations down-slope based
on the above solution. It is clear that most of the particles are confined to the central
region of the flow. This is because the velocities needed to advectively transport the
particles depend on the presence of particles to create the buoyancy force needed to
drive them. Although the form of the solution for the height of the current implies
that the current is of infinite extent in the cross-slope direction, the fact that the
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Figure 6. The buoyancy ΦH as a function of Y in a particle-driven gravity current with entrainment
but no settling. The several profiles are for varying X ranging from 1.2 (inner profile) to 6.2 (outer
profile) and are evenly spaced with intervals of 0.5.

volume fraction of particles and ΦH decay exponentially away from the centre of
the flow means that the practical extent of the current is finite. Taking the locus of
points where the volume fraction of the particles is one percent of the value along
the centreline, the approximate cross-slope extent of the current is given by

ye(x) ≈ 1.66

(
ECθ

Sθ

)1/2

x, (4.15)

showing that it grows linearly with down-slope distance.

4.2. Turbidity current with entrainment

Unfortunately, there is no analytic solution to (4.5)–(4.7) which describe the dynamics
and deposition of a turbidity current down a planar slope with entrainment. However,
as was noted earlier, these are universal equations independent of all the dimensional
parameters. They may thus be solved once numerically to determine a master curve
for the deposition of particles. Again, we used an explicit central finite-difference
method to yield the results illustrated in figures 7–9. The initial conditions in X � 1
were those of a homogeneous current with entrainment, with the height and volume
fraction of particles set to zero at large values of |Y| for numerical convenience. The
location of the truncation of the current had no effect on the deposition patterns if
it were located at two or more times the extent of a homogeneous current estimated
in (4.15).

Figure 7 depicts the volume fraction of particles as a function of Y for several
locations down-slope. It is also clear in this regime that the majority of the flow is
confined to a central core in the current. Figure 8 depicts the height of the current
near to and far from the source. Along the central core of the current, we observe that
the height of the current increases linearly with the distance down-slope as expected
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Figure 7. The volume fraction of particles Φ in a particle-driven gravity current with entrainment
and settling as a function of cross-slope position Y. The profiles are for varying X ranging from
1.2 (highest profile) to 3.0 (lowest profile) and are evenly spaced with intervals of 0.2.

for a homogeneous current. Note that at large distances down-slope the height of the
current again begins to flatten like that of a homogeneous current. This is because for
numerical convenience the interstitial fluid of the current was made slightly denser
than that of the ambient and so after the particles have settled it behaves like a
homogeneous current. Figure 9 illustrates the contours of the density of deposit for
a current flowing for a sufficiently long-time that the steady-state behaviour of the
flow dominates its nature. The contours are scaled by the deposit at the origin for
some specific time. The deposit is lobe-shaped and the dimensional down-slope and
cross-slope extents are scaled by X̃ and Ỹ . Assuming that the extent of the deposit is
defined by the contour Φ = 0.01, the down-slope and cross-slope extent of the deposit
are approximately 3.4X̃ and 4.5Ỹ .

5. Conclusions
We have theoretically described the steady-state behaviour of turbulent homoge-

neous and particle-driven gravity currents flowing down a planar slope due to a
steady, point source of dense fluid both with and without entrainment of the am-
bient fluid. Near the source and for mild slopes, it was found that the dynamics
were dominated by a balance between the buoyancy and frictional forces, and far
from the source and for steeper slopes, entrainment also becomes significant. For the
homogeneous currents similarity solutions were determined that describe the height
and buoyancy distribution in the flows and determine the extent of the currents,
ye(x). In particular it was found that for down-slope positions x & (Q2/g′0Cθcf3)1/5,
when the current no longer behaves as an axisymmetric current on a horizontal
surface and the effect of the slope is important, the cross-slope extent of a current
initially varies like ye(x) ∼ x3/8 without entrainment. When the down-slope position
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Figure 8. The height H of a particle-driven gravity current with entrainment and settling as a
function of the cross-slope position Y for a smaller (a) and larger (b) range of X. The profiles
are for varying X ranging from (a) 1.2 (lowest profile) to 5.6 (highest profile), evenly spaced with
intervals of 0.2, and (b) 1.2 (lowest profile) to 16.2 (highest profile), evenly spaced with intervals of
0.5.

Down-slope extent Cross-slope extent

No entrainment 1.8

(
2g′0Q6S4

θ

vs
8cfC

11
θ

)1/11

3.2

(
Q5cf

2g′0S4
θ vs

3

)1/11

Entrainment 3.4

(
4g′0

2
Q2E5S3

θ

C6
θ cf

2vs
6

)1/2

4.5

(
2g′0QE3Sθ

C3
θ cfvs

3

)
Table 1. Down-slope and cross-slope extent of the deposit from a turbidity current defined as the

distance where the depth or density of deposit is 1% of the maximum value at the origin.

x & (cfQ
2/g′0CθE4)1/5, the cumulative effects of entrainment become important and

ye(x) ∼ x.
In the case of particle-driven or turbidity currents, both with and without entrain-

ment, a scaling analysis of the governing equations produced characteristic dimen-
sions, in particular the down-slope and cross-slope extents of the deposit. Using these
characteristic dimensions, the equations were rescaled to produce sets of equations
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Figure 9. Contours of the normalized depth or density of deposit from a particle-driven gravity
current with entrainment as function of down-slope and cross-slope positions. The coordinates are
non-dimensionalized by X̃ and Ỹ .

independent of any of the dimensional parameters. These were solved numerically
to determine the universal deposition patterns from turbidity flows with and without
entrainment. Table 1 summarizes the extent of these deposits in terms of the charac-
teristic dimensions. We may estimate whether deposition occurs predominantly in the
entraining or non-entraining regime using xt for a homogeneous current. For xt � X̂
deposition will occur in the regime of non-entrainment, but for xt � X̂, deposition
will occur in the entraining regime. Finally, we note that extent of deposit created by
certain unsteady inflows of particle-laden fluid may be determined by scaling analyses
similar to those presented here. An example is shown in the Appendix.

R.T.B. gratefully acknowledges NERC for supporting a summer visit to Cam-
bridge where this work was begun and the intellectually stimulating environment and
hospitality provided by Professor H. E. Huppert, the ITG and DAMTP.

Appendix. Extent of deposit for volumetric inputs of Qtα

Scaling arguments similar to those given in § 3.2 and § 4 for non-entraining and
entraining turbidity currents due to a constant flux of particle-laden fluid may be used
to estimate the down-slope and cross-slope extent of deposits for turbidity currents
with a volumetric input equal to Qtα, where α is a non-negative constant. The case of
a constant flux input is α = 1. We note that, following techniques illustrated in Lister
(1992), one may also determine the down-slope and cross-slope extents of homoge-
neous currents with unsteady inputs, and in fact show that the near-source behaviour
of the currents is that due to a steady flow with an instantaneous flux of strength
αQtα−1. However, our interest here is with the behaviour of particle-laden flows.

For a turbidity current with negligible entrainment, the characteristic down-slope
and cross-slope dimensions, X̂ and Ŷ , are proportional to the product of the char-
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acteristic down-slope and cross-slope velocities, Û and V̂ , and the characteristic time
for settling, Ĥ/vs cos θ, where Ĥ is the characteristic height of the current; that is,

X̂ ∼ ÛĤ/vs cos θ and Ŷ ∼ V̂ Ĥ/vs cos θ. From (3.4)–(3.5), Û ∼ (2g′0SθĤ/cf)1/2 and

V̂ ∼ (2g′0C2
θ Ĥ

3
/cfSθŶ

2
)1/2 and, since the total input of particles must be conserved,

ĤX̂Ŷ ∼ Qtα. These scalings yield

X̂ =

[(
2g′0Q6S4

θ

vs
8cfC

11
θ

)(
2g′0SθvsCθ

cf

)2(1−α)]1/(15−4α)

, (A 1)

Ŷ =

[(
Q5cf

2g′0S4
θ vs

3

)(
2g′0C4

θ vs
3

cf

)(1−α)]1/(15−4α)

. (A 2)

Note that for α > 15/4 no deposit of finite extent exists. For these cases, the extent
of the deposit increases with time according to the extent of a homogeneous current
because the height of the current increases with time at such a rate that particles,
which are assumed vertically well-mixed, settle out more slowly than they are advected
downstream.

For a turbidity current which entrains ambient fluid, the volume fraction must also
be rescaled as was done in § 4. As before, the characteristic down-slope and cross-
slope dimensions, X̃ and Ỹ , satisfy X̃ ∼ ŨH̃/vs cos θ and Ỹ ∼ Ṽ H̃/vs cos θ. From
(3.4)–(3.5), but including the dilution of φ to a scale Φ̃, Ũ ∼ (2g′0SθΦ̃H̃/cf)1/2 and

Ṽ ∼ (2g′0C2
θ Φ̃H̃

3
/cfSθỸ

2
)1/2 and, since the total input of particles must be conserved,

Φ̃H̃X̃Ỹ ∼ Qtα. These scalings yield

X̃ ∼
[(

4g′0
2
Q2E5S3

θ

C7
θ cf

2vs
6

)1/2
(

E

vsCθ

)(α−1)]1/(2−α)
, (A 3)

Ỹ ∼
[(

2g′0QE3Sθ

cfvs
3C3

θ

)(
EX̃

vsCθ

)(α−1)]1/(2−α)
. (A 4)

For an entraining turbidity current, the deposit is finite only for α < 2. For greater
values of α the deposit increases in extent as the rate of influx of particle-laden fluid
increases according to that of a homogeneous current.
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